A simple explanation of the Pearson correlation coefficient with examples
A step-by-step guide to catching real anomalies without drowning in false alerts.
This article details a hands-on approach to modeling rare events in time series data using Python. It covers data exploration, defining extreme events, fitting distributions (GEV, Weibull, Gumbel), and evaluating model performance using metrics like log-likelihood, AIC, and BIC. The example uses weather data and provides code snippets for implementation.